100. 3n+1 problem

>> শনিবার, ২১ নভেম্বর, ২০০৯


Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

The Problem

Consider the following algorithm:

		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then  tex2html_wrap_inline44 

		5. 		 		 else  tex2html_wrap_inline46 

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

The Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.
You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10

100 200

201 210

900 1000

Sample Output

1 10 20

100 200 125

201 210 89

900 1000 174

  Presented by rizoan toufiq
1.       J can less I; i.e j
2.       I=j
The order of i and j in output must be the same as the input, even when j is smaller than i.

/*****Optimizations **************

To get the problem in good time you must create an array with size 1000000. Then using recursion with memoization try to not compute any value more than once. This will help you solve it in about 0.200 sec. */

Code: Brut force : Run Time: 0.700


Download to click
Optimal solution: RT: .064sec[recursion]


Download to click

একটি মন্তব্য পোস্ট করুন

  © Rizoan Toufiq , Copy Right @ 2009

Back to TOP